7 resultados para Reaction diffusion
em Nottingham eTheses
Resumo:
We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE), for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first, close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkoehler number) is increased, and, second, for large Damkoehler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives an accurate picture of the dynamics of the system at large Damkoehler number. Published in Physica D (2006)
Resumo:
The evolution of a competitive-consecutive chemical reaction is computed numerically in a two-dimensional chaotic fluid flow with initially segregated reactants. Results from numerical simulations are used to evaluate a variety of reduced models commonly adopted to model the full advection-reaction-diffusion problem. Particular emphasis is placed upon fast reactions, where the yield varies most significantly with Peclet number (the ratio of diffusive to advective time scales). When effects of the fluid mechanical mixing are strongest, we find that the yield of the reaction is underestimated by a one-dimensional lamellar model that ignores the effects of fluid mixing, but overestimated by two other lamellar models that include fluid mixing.
Resumo:
Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).
Resumo:
We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.
Resumo:
In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
Resumo:
We describe and evaluate two reduced models for nonlinear chemical reactions in a chaotic laminar flow. Each model involves two separate steps to compute the chemical composition at a given location and time. The “manifold tracking model” first tracks backwards in time a segment of the stable manifold of the requisite point. This then provides a sample of the initial conditions appropriate for the second step, which requires solving one-dimensional problems for the reaction in Lagrangian coordinates. By contrast, the first step of the “branching trajectories model” simulates both the advection and diffusion of fluid particles that terminate at the appropriate point; the chemical reaction equations are then solved along each of the branched trajectories in a second step. Results from each model are compared with full numerical simulations of the reaction processes in a chaotic laminar flow.