3 resultados para Rat liver arginase
em Nottingham eTheses
Resumo:
Recombinant expression of the Aryl Hydrocarbon Receptor (AhR) yields small amounts of ligand- binding competent AhR. Therefore, Spodoptera frugiperda (Sf9) cells and baculovirus have been evaluated for high level and functional expression of AhR. Rat and human AhR were expressed as soluble protein in significant amounts. Expression of ligand-binding competent AhR was sensitive to the protein concentration of Sf9 extract, and co-expression of the chaperone p23 failed to affect the yield of functional ligand-binding AhR. The expression system yielded high levels of functional protein, with the ligand-binding capacity (Bmax) typically 20- fold higher than that obtained with rat liver cytosol. Quantitative estimates of the ligand-binding affinity of human and rat AhR were obtained; the Kd for recombinant rat AhR was indistinguishable from that of native rat AhR, thereby validating the expression system as a faithful model for native AhR. The human AhR bound TCDD with significantly lower affinity than the rat AhR. These findings demonstrate high-level expression of ligand-binding competent AhR, and sufficient AhR for quantitative analysis of ligand-binding.
Resumo:
It has been reported that fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes defects in the male reproductive system of the rat. We set out to replicate and extend these effects using a robust experimental design. Groups of 75 (control vehicle) or 55 (50, 200 or 1000 ng of TCDD kg-1 bodyweight) female Wistar(Han) rats were exposed to TCDD on Gestational Day (GD) 15, then allowed to litter. The high dose group dams showed no sustained weight loss compared to control, but four animals had total litter loss. Pups in the high dose group showed reduced body weight up till day 21, and pups in the medium dose group showed reduced body weight in the first week post partum. Balano-preputial separation (BPS) was significantly delayed in the high dose group male offspring. There were no significant effects of treatment when the offspring were subjected to a functional observational battery, or mated with females to assess reproductive capability. 25 males per group were killed on post natal day (PND) 70, and ~60 animals per group (~30 for the high dose group) on PND120 to assess seminology and other endpoints. At PND120, the two highest dose groups showed a statistically significant elevation of sperm counts, compared to control; however, this effect was small (~30%), within the normal range of sperm counts for this strain of rat, was not reflected in testicular spermatid counts nor PND70 data, and is therefore postulated to have no biological significance. Although there was an increase in the proportion of abnormal sperm at PND70, seminology parameters were otherwise unremarkable. Testis weights in the high dose group were slightly decreased at PND 70 and 120, and at PND120, brain weights were decreased in the high dose group, liver to body weight ratios were increased for all three dose groups, with an increase in inflammatory cell foci in the epididymis in the high dose group. These data show that TCDD is a potent developmental toxin after exposure of the developing fetus, but that acute developmental exposure to TCDD on GD15 caused no decrease in sperm counts.
Resumo:
We compared the effects of a single acute dose, or chronic fetal exposure, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the male reproductive system of the Wistar(Han) rat. Tissue samples were taken from dams on GD16 and GD21, and from offspring on PND70 and 120. Steady state concentration of TCDD was demonstrated in the chronic study: body burdens were comparable in both studies. Fetal TCDD concentrations were comparable after acute and chronic exposure, and demonstrate more potent toxicity after chronic versus acute dosing. In maternal liver, cytochrome P450 (CYP)1A1 and CYP1A2 RNA were induced. In fetus, there was induction of both CYP1A1 and CYP1A2 RNA at medium and high doses, but inadequate evidence for induction at low dose in either study. The low level induction of CYP1A1 RNA at low dose in fetus argues against AhR activation in fetus as a mechanism of toxicity of TCDD in causing delay in balanopreputial separation, and the greater induction of CYP1A1 RNA in PND70 offspring liver suggests that lactational transfer of TCDD is crucial to this toxicity. These data characterise the maternal and fetal disposition of TCDD, induction of CYP1A1 RNA as a measure of AhR activation, and suggest that lactational transfer of TCDD determines the difference in delay in balanopreputial separation between the two studies.