1 resultado para RANDOM MATRICES
em Nottingham eTheses
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Argos - Repositorio Institucional de la Secretaría de Investigación y Postgrado de la Facultad de Humanidades y Ciencias Sociales de la Universidad Nacional de Misiones (1)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (73)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (78)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (75)
- Cochin University of Science & Technology (CUSAT), India (14)
- Collection Of Biostatistics Research Archive (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (102)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- CUNY Academic Works (20)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (10)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (2)
- DigitalCommons@The Texas Medical Center (8)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (12)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (12)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (22)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (33)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (8)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (43)
- Université de Montréal (1)
- Université de Montréal, Canada (21)
- University of Connecticut - USA (4)
- University of Michigan (42)
- University of Queensland eSpace - Australia (30)
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.