1 resultado para R-Statistical computing
em Nottingham eTheses
Filtro por publicador
- Aberdeen University (9)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (3)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (14)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (3)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (34)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (20)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (18)
- Instituto Politécnico do Porto, Portugal (1)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (9)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (439)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (32)
- University of Queensland eSpace - Australia (30)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Information concerning the run-time behaviour of programs ("program profiling") can be of the greatest assistance in improving program efficiency. Two software devices have been developed for use on ICL 1900 Series machines to provide such information. DIDYMUS is probabilistic in approach and uses multi- tasking facilities to sample the instruction addresses used by a program at run time. It will work regardless of the source language of the program and matches the detected addresses against a loader map to produce a histogram. SCAMP is restricted to profiling Algol 68-R programs, but provides deterministic information concerning those language constructs that are monitored. Procedure calls to appropriate counting routines are inserted into the source text in a pre-pass prior to compilation. The profile information is printed out at the end of the program run. It has been found that these two approaches complement each other very effectively.