3 resultados para Quantum spin Hall insulator
em Nottingham eTheses
Resumo:
The evaluation of relativistic spin networks plays a fundamental role in the Barrett-Crane state sum model of Lorentzian quantum gravity in 4 dimensions. A relativistic spin network is a graph labelled by unitary irreducible representations of the Lorentz group appearing in the direct integral decomposition of the space of L^2 functions on three-dimensional hyperbolic space. To `evaluate' such a spin network we must do an integral; if this integral converges we say the spin network is `integrable'. Here we show that a large class of relativistic spin networks are integrable, including any whose underlying graph is the 4-simplex (the complete graph on 5 vertices). This proves a conjecture of Barrett and Crane, whose validity is required for the convergence of their state sum model.
Resumo:
We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.
Resumo:
A set of observables is described for the topological quantum field theory which describes quantum gravity in three space-time dimensions with positive signature and positive cosmological constant. The simplest examples measure the distances between points, giving spectra and probabilities which have a geometrical interpretation. The observables are related to the evaluation of relativistic spin networks by a Fourier transform.