3 resultados para Process control automation device industry

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MATCH (Multidisciplinary Assessment of Technology Centre for Healthcare) is a new collaboration in the UK that aims to support the healthcare sector by creating methods to assess the value of medical devices from concept through to mature product. A major aim of MATCH is to encourage the inclusion of the user throughout the product lifecycle in order to achieve devices that truly meet the requirements of their users. A review of the published literature indicates that user requirements are mainly collected during the design and evaluation stage of the product lifecycle whilst other areas, including the concept stage, have less user involvement. Complementing the literature review is an in-depth consultation with the medical device industry, which has identified a number of barriers encountered by companies when attempting to capture user requirements. These will be addressed by a number of case study projects, performed in collaboration with our industrial partners, that will examine the application and utility of different approaches to collecting and analysing data on user requirements. MATCH is focused on providing advice to device developers on how to select and apply methods that have maximum theoretical strength, practical application, cost-effectiveness and likelihood of wide sector acceptance. Feedback will be sought in order to ensure that the needs of the diverse medical device sector are met.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) and outlines the problem of integrating a user-centred approach for development of medical devices together with the information and communication technology environments in which they are increasingly required to operate. We highlight some of the regulatory requirements that are relevant to user needs consideration in medical device development. Finally, we reveal a range of limitations in the current practice of the medical device industry in the area of user needs capture, based on responses from interviews with MATCH’s industry partners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.