2 resultados para Predicting model

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the evolution of bipedalism among the homnoids in an ecological context we need to be able to estimate theenerrgetic cost of locomotion in fossil forms. Ideally such an estimate would be based entirely on morphology since, except for the rare instances where footprints are preserved, this is hte only primary source of evidence available. In this paper we use evolutionary robotics techniques (genetic algoritms, pattern generators and mechanical modeling) to produce a biomimentic simulation of bipedalism based on human body dimensions. The mechnaical simulation is a seven-segment, two-dimensional model with motive force provided by tension generators representing the major muscle groups acting around the lower-limb joints. Metabolic energy costs are calculated from the muscel model, and bipedal gait is generated using a finite-state pattern generator whose parameters are produced using a genetic algorithm with locomotor economy (maximum distance for a fixed energy cost) as the fitness criterion. The model is validated by comparing the values it generates with those for modern humans. The result (maximum efficiency of 200 J m-1) is within 15% of the experimentally derived value, which is very encouraging and suggests that this is a useful analytic technique for investigating the locomotor behaviour of fossil forms. Initial work suggests that in the future this technique could be used to estimate other locomotor parameters such as top speed. In addition, the animations produced by this technique are qualitatively very convincing, which suggests that this may also be a useful technique for visualizing bipedal locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose—An early and reliable prognosis for recovery in stroke patients is important for initiation of individual treatment and for informing patients and relatives. We recently developed and validated models for predicting survival and functional independence within 3 months after acute stroke, based on age and the National Institutes of Health Stroke Scale score assessed within 6 hours after stroke. Herein we demonstrate the applicability of our models in an independent sample of patients from controlled clinical trials. Methods—The prognostic models were used to predict survival and functional recovery in 5419 patients from the Virtual International Stroke Trials Archive (VISTA). Furthermore, we tried to improve the accuracy by adapting intercepts and estimating new model parameters. Results—The original models were able to correctly classify 70.4% (survival) and 72.9% (functional recovery) of patients. Because the prediction was slightly pessimistic for patients in the controlled trials, adapting the intercept improved the accuracy to 74.8% (survival) and 74.0% (functional recovery). Novel estimation of parameters, however, yielded no relevant further improvement. Conclusions—For acute ischemic stroke patients included in controlled trials, our easy-to-apply prognostic models based on age and National Institutes of Health Stroke Scale score correctly predicted survival and functional recovery after 3 months. Furthermore, a simple adaptation helps to adjust for a different prognosis and is recommended if a large data set is available. (Stroke. 2008;39:000-000.)