3 resultados para Polynomial approximation

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length - the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approximation lemma is a simplification of the well-known take lemma, and is used to prove properties of programs that produce lists of values. We show how the approximation lemma, unlike the take lemma, can naturally be generalised from lists to a large class of datatypes, and present a generic approximation lemma that is parametric in the datatype to which it applies. As a useful by-product, we find that generalising the approximation lemma in this way also simplifies its proof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the question of the rates of convergence of the p-version interior penalty discontinuous Galerkin method (p-IPDG) for second order elliptic problems with non-homogeneous Dirichlet boundary conditions. It is known that the p-IPDG method admits slightly suboptimal a-priori bounds with respect to the polynomial degree (in the Hilbertian Sobolev space setting). An example for which the suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and validated in practice through numerical experiments is presented. Moreover, the performance of p- IPDG on the related problem of p-approximation of corner singularities is assessed both theoretically and numerically, witnessing an almost doubling of the convergence rate of the p-IPDG method.