1 resultado para Plant architecture model
em Nottingham eTheses
Filtro por publicador
- JISC Information Environment Repository (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Boston University Digital Common (11)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (81)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (32)
- FUNDAJ - Fundação Joaquim Nabuco (4)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (25)
- Institutional Repository of Leibniz University Hannover (6)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (4)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (26)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (13)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (107)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Scielo Uruguai (1)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (62)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (44)
- University of Queensland eSpace - Australia (46)
- WestminsterResearch - UK (3)
Resumo:
Mechanistic models used for prediction should be parsimonious, as models which are over-parameterised may have poor predictive performance. Determining whether a model is parsimonious requires comparisons with alternative model formulations with differing levels of complexity. However, creating alternative formulations for large mechanistic models is often problematic, and usually time-consuming. Consequently, few are ever investigated. In this paper, we present an approach which rapidly generates reduced model formulations by replacing a model’s variables with constants. These reduced alternatives can be compared to the original model, using data based model selection criteria, to assist in the identification of potentially unnecessary model complexity, and thereby inform reformulation of the model. To illustrate the approach, we present its application to a published radiocaesium plant-uptake model, which predicts uptake on the basis of soil characteristics (e.g. pH, organic matter content, clay content). A total of 1024 reduced model formulations were generated, and ranked according to five model selection criteria: Residual Sum of Squares (RSS), AICc, BIC, MDL and ICOMP. The lowest scores for RSS and AICc occurred for the same reduced model in which pH dependent model components were replaced. The lowest scores for BIC, MDL and ICOMP occurred for a further reduced model in which model components related to the distinction between adsorption on clay and organic surfaces were replaced. Both these reduced models had a lower RSS for the parameterisation dataset than the original model. As a test of their predictive performance, the original model and the two reduced models outlined above were used to predict an independent dataset. The reduced models have lower prediction sums of squares than the original model, suggesting that the latter may be overfitted. The approach presented has the potential to inform model development by rapidly creating a class of alternative model formulations, which can be compared.