1 resultado para Person Tracking, Depth, Motion Detection
em Nottingham eTheses
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Aston University Research Archive (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (116)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (4)
- CaltechTHESIS (3)
- CentAUR: Central Archive University of Reading - UK (54)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (8)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (8)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Massachusetts Institute of Technology (10)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (296)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Scielo Saúde Pública - SP (3)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (53)
- Universidade do Minho (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (39)
- Université de Montréal (2)
- Université de Montréal, Canada (11)
- University of Canberra Research Repository - Australia (3)
- University of Queensland eSpace - Australia (55)
- WestminsterResearch - UK (1)
Resumo:
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify variable length unknown motifs which repeat within time series data. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper we test the flexibility of the motif tracking algorithm by applying it to the search for patterns in two industrial data sets. The algorithm is able to identify a population of motifs successfully in both cases, and the value of these motifs is discussed.