8 resultados para Permutations.

em Nottingham eTheses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new type of genetic algorithm for the set covering problem. It differs from previous evolutionary approaches first because it is an indirect algorithm, i.e. the actual solutions are found by an external decoder function. The genetic algorithm itself provides this decoder with permutations of the solution variables and other parameters. Second, it will be shown that results can be further improved by adding another indirect optimisation layer. The decoder will not directly seek out low cost solutions but instead aims for good exploitable solutions. These are then post optimised by another hill-climbing algorithm. Although seemingly more complicated, we will show that this three-stage approach has advantages in terms of solution quality, speed and adaptability to new types of problems over more direct approaches. Extensive computational results are presented and compared to the latest evolutionary and other heuristic approaches to the same data instances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An indirect genetic algorithm for the non-unicost set covering problem is presented. The algorithm is a two-stage meta-heuristic, which in the past was successfully applied to similar multiple-choice optimisation problems. The two stages of the algorithm are an ‘indirect’ genetic algorithm and a decoder routine. First, the solutions to the problem are encoded as permutations of the rows to be covered, which are subsequently ordered by the genetic algorithm. Fitness assignment is handled by the decoder, which transforms the permutations into actual solutions to the set covering problem. This is done by exploiting both problem structure and problem specific information. However, flexibility is retained by a self-adjusting element within the decoder, which allows adjustments to both the data and to stages within the search process. Computational results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new type of genetic algorithm for the set covering problem. It differs from previous evolutionary approaches first because it is an indirect algorithm, i.e. the actual solutions are found by an external decoder function. The genetic algorithm itself provides this decoder with permutations of the solution variables and other parameters. Second, it will be shown that results can be further improved by adding another indirect optimisation layer. The decoder will not directly seek out low cost solutions but instead aims for good exploitable solutions. These are then post optimised by another hill-climbing algorithm. Although seemingly more complicated, we will show that this three-stage approach has advantages in terms of solution quality, speed and adaptability to new types of problems over more direct approaches. Extensive computational results are presented and compared to the latest evolutionary and other heuristic approaches to the same data instances.