2 resultados para Penrose limit and pp-wave background
em Nottingham eTheses
Resumo:
We investigate the Becker-Döring model of nucleation with three generalisations; an input of monomer, an input of inhibitor and finally, we allow the monomers to form two morphologies of cluster. We assume size-independent aggregation and fragmentation rates. Initially we consider the problem of constant monomer input and determine the steady-state solution approached in the large-time limit, and the manner in which it is approached. Secondly, in addition to a constant input of monomer we allow a constant input of inhibitor, which prevents clusters growing any larger and this removes them from the kinetics of the process; the inhibitor is consumed in the action of poisoning a cluster. We determine a critical ratio of poison to monomer input below which the cluster concentrations tend to a non-zero steady-state solution and the poison concentration tends to a finite value. Above the critical input ratio, the concentrations of all cluster sizes tend to zero and the poison concentration grows without limit. In both cases the solution in the large-time limit is determined. Finally we consider a model where monomers form two morphologies, but the inhibitor only acts on one morphology. Four cases are identified, depending on the relative poison to monomer input rates and the relative thermodynamic stability. In each case we determine the final cluster distribution and poison concentration. We find that poisoning the less stable cluster type can have a significant impact on the structure of the more stable cluster distribution; a counter-intuitive result. All results are shown to agree with numerical simulation.
Resumo:
In this paper we consider a neural field model comprised of two distinct populations of neurons, excitatory and inhibitory, for which both the velocities of action potential propagation and the time courses of synaptic processing are different. Using recently-developed techniques we construct the Evans function characterising the stability of both stationary and travelling wave solutions, under the assumption that the firing rate function is the Heaviside step. We find that these differences in timing for the two populations can cause instabilities of these solutions, leading to, for example, stationary breathers. We also analyse $quot;anti-pulses,$quot; a novel type of pattern for which all but a small interval of the domain (in moving coordinates) is active. These results extend previous work on neural fields with space dependent delays, and demonstrate the importance of considering the effects of the different time-courses of excitatory and inhibitory neural activity.