7 resultados para Partial data fusion

em Nottingham eTheses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to the activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the fused data signals with a secondary data stream. Aggregate output of a population of cells is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human immune system. DCs perform the vital role of combining signals from the host tissue and correlate these signals with proteins known as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dendritic cell algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a ‘context aware’ detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a self-organizing map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Baseline severity and clinical stroke syndrome (Oxford Community Stroke Project, OCSP) classification are predictors of outcome in stroke. We used data from the ‘Tinzaparin in Acute Ischaemic Stroke Trial’ (TAIST) to assess the relationship between stroke severity, early recovery, outcome and OCSP syndrome. Methods: TAIST was a randomised controlled trial assessing the safety and efficacy of tinzaparin versus aspirin in 1,484 patients with acute ischaemic stroke. Severity was measured as the Scandinavian Neurological Stroke Scale (SNSS) at baseline and days 4, 7 and 10, and baseline OCSP clinical classification recorded: total anterior circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar infarct (LACI) and posterior circulation infarction (POCI). Recovery was calculated as change in SNSS from baseline at day 4 and 10. The relationship between stroke syndrome and SNSS at days 4 and 10, and outcome (modified Rankin scale at 90 days) were assessed. Results: Stroke severity was significantly different between TACI (most severe) and LACI (mildest) at all four time points (p<0.001), with no difference between PACI and POCI. The largest change in SNSS score occurred between baseline and day 4; improvement was least in TACI (median 2 units), compared to other groups (median 3 units) (p<0.001). If SNSS did not improve by day 4, then early recovery and late functional outcome tended to be limited irrespective of clinical syndrome (SNSS, baseline: 31, day 10: 32; mRS, day 90: 4); patients who recovered early tended to continue to improve and had better functional outcome irrespective of syndrome (SNSS, baseline: 35, day 10: 50; mRS, day 90: 2). Conclusions: Although functional outcome is related to baseline clinical syndrome (best with LACI, worst with TACI), patients who improve early have a more favourable functional outcome, irrespective of their OCSP syndrome. Hence, patients with a TACI syndrome may still achieve a reasonable outcome if early recovery occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial immune systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has shown how AISs which use multi-level information sources as input data can be used to build effective algorithms for realtime computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.