2 resultados para Overall Likelihood and Posterior
em Nottingham eTheses
Resumo:
Introduction: Baseline severity and clinical stroke syndrome (Oxford Community Stroke Project, OCSP) classification are predictors of outcome in stroke. We used data from the ‘Tinzaparin in Acute Ischaemic Stroke Trial’ (TAIST) to assess the relationship between stroke severity, early recovery, outcome and OCSP syndrome. Methods: TAIST was a randomised controlled trial assessing the safety and efficacy of tinzaparin versus aspirin in 1,484 patients with acute ischaemic stroke. Severity was measured as the Scandinavian Neurological Stroke Scale (SNSS) at baseline and days 4, 7 and 10, and baseline OCSP clinical classification recorded: total anterior circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar infarct (LACI) and posterior circulation infarction (POCI). Recovery was calculated as change in SNSS from baseline at day 4 and 10. The relationship between stroke syndrome and SNSS at days 4 and 10, and outcome (modified Rankin scale at 90 days) were assessed. Results: Stroke severity was significantly different between TACI (most severe) and LACI (mildest) at all four time points (p<0.001), with no difference between PACI and POCI. The largest change in SNSS score occurred between baseline and day 4; improvement was least in TACI (median 2 units), compared to other groups (median 3 units) (p<0.001). If SNSS did not improve by day 4, then early recovery and late functional outcome tended to be limited irrespective of clinical syndrome (SNSS, baseline: 31, day 10: 32; mRS, day 90: 4); patients who recovered early tended to continue to improve and had better functional outcome irrespective of syndrome (SNSS, baseline: 35, day 10: 50; mRS, day 90: 2). Conclusions: Although functional outcome is related to baseline clinical syndrome (best with LACI, worst with TACI), patients who improve early have a more favourable functional outcome, irrespective of their OCSP syndrome. Hence, patients with a TACI syndrome may still achieve a reasonable outcome if early recovery occurs.
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.