7 resultados para Ontological proof

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recursion is a well-known and powerful programming technique, with a wide variety of applications. The dual technique of corecursion is less well-known, but is increasingly proving to be just as useful. This article is a tutorial on the four main methods for proving properties of corecursive programs: fixpoint induction, the approximation (or take) lemma, coinduction, and fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. However, these methods are all rather low level, in that they do not exploit the common structure that is often present in corecursive definitions. We argue for a more structured approach to proving properties of corecursive programs. In particular, we show that by writing corecursive programs using a simple operator that encapsulates a common pattern of corecursive definition, we can then use high-level algebraic properties of this operator to conduct proofs in a purely calculational style that avoids the use of inductive or coinductive methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a framework for describing proof planners. This framework is based around a decomposition of proof planners into planning states, proof language, proof plans, proof methods, proof revision, proof control and planning algorithms. We use this framework to motivate the comparison of three recent proof planning systems, lclam, OMEGA and IsaPlanner, and demonstrate how the framework allows us to discuss and illustrate both their similarities and differences in a consistent fashion. This analysis reveals that proof control and the use of contextual information in planning states are key areas in need of further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a generic architecture for proof planning systems in terms of an interaction between a customisable proof module and search module. These refer to both global and local information contained in reasoning states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the use of proof planning to diagnose errors in program code. In particular it looks at the errors that arise in the base cases of recursive programs produced by undergraduates. It describes two classes of error that arise in this situation. The use of test cases would catch these errors but would fail to distinguish between them. The system adapts proof critics, commonly used to patch faulty proofs, to diagnose such errors and distinguish between the two classes. It has been implemented in Lambda-clam, a proof planning system, and applied successfully to a small set of examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proof critics are a technology from the proof planning paradigm. They examine failed proof attempts in order to extract information which can be used to generate a patch which will allow the proof to go through. We consider the proof of the $quot;whisky problem$quot;, a challenge problem from the domain of temporal logic. The proof requires a generalisation of the original conjecture and we examine two proof critics which can be used to create this generalisation. Using these critics we believe we have produced the first automatic proofs of this challenge problem. We use this example to motivate a comparison of the two critics and propose that there is a place for specialist critics as well as powerful general critics. In particular we advocate the development of critics that do not use meta-variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.