1 resultado para One-pass scheme
em Nottingham eTheses
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Aston University Research Archive (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (107)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (21)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (25)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (110)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (18)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (48)
- Instituto Politécnico do Porto, Portugal (63)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (41)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (29)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- Scielo Saúde Pública - SP (76)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade do Minho (27)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (141)
- Université de Montréal, Canada (3)
- University of Queensland eSpace - Australia (113)
- University of Washington (1)
Resumo:
Many tissue level models of neural networks are written in the language of nonlinear integro-differential equations. Analytical solutions have only been obtained for the special case that the nonlinearity is a Heaviside function. Thus the pursuit of even approximate solutions to such models is of interest to the broad mathematical neuroscience community. Here we develop one such scheme, for stationary and travelling wave solutions, that can deal with a certain class of smoothed Heaviside functions. The distribution that smoothes the Heaviside is viewed as a fundamental object, and all expressions describing the scheme are constructed in terms of integrals over this distribution. The comparison of our scheme and results from direct numerical simulations is used to highlight the very good levels of approximation that can be achieved by iterating the process only a small number of times.