2 resultados para Obstetrisk anal sfinkterruptur
em Nottingham eTheses
Resumo:
We extend the construction and analysis of the non-overlapping Schwarz preconditioners proposed in Antonietti et al. [Math. Model. Numer. Anal., 41(1):21-54, 2007] and [Math. Model. Numer. Anal., submitted, 2006] to the (non-consistent) super penalty discontinuos Galerkin methods introduced by Babuska et al. [SIAM J. Numer. Anal., 10:863-875, 1973] and by Brezzi et al. [Numer. Methods Partial Differential Equations, 16(4):365-378, 2000]. We show that the resulting preconditioners are scalable, and we provide the convergence estimates. We also present numerical experiments demonstrating the theoretical results.
Resumo:
This work is concerned with the design and analysis of hp-version discontinuous Galerkin (DG) finite element methods for boundary-value problems involving the biharmonic operator. The first part extends the unified approach of Arnold, Brezzi, Cockburn & Marini (SIAM J. Numer. Anal. 39, 5 (2001/02), 1749-1779) developed for the Poisson problem, to the design of DG methods via an appropriate choice of numerical flux functions for fourth order problems; as an example we retrieve the interior penalty DG method developed by Suli & Mozolevski (Comput. Methods Appl. Mech. Engrg. 196, 13-16 (2007), 1851-1863). The second part of this work is concerned with a new a-priori error analysis of the hp-version interior penalty DG method, when the error is measured in terms of both the energy-norm and L2-norm, as well certain linear functionals of the solution, for elemental polynomial degrees $p\ge 2$. Also, provided that the solution is piecewise analytic in an open neighbourhood of each element, exponential convergence is also proven for the p-version of the DG method. The sharpness of the theoretical developments is illustrated by numerical experiments.