9 resultados para Numerical approximation and analysis
em Nottingham eTheses
Resumo:
The purpose of this paper is twofold. Firstly it presents a preliminary and ethnomethodologically-informed analysis of the way in which the growing structure of a particular program's code was ongoingly derived from its earliest stages. This was motivated by an interest in how the detailed structure of completed program `emerged from nothing' as a product of the concrete practices of the programmer within the framework afforded by the language. The analysis is broken down into three sections that discuss: the beginnings of the program's structure; the incremental development of structure; and finally the code productions that constitute the structure and the importance of the programmer's stock of knowledge. The discussion attempts to understand and describe the emerging structure of code rather than focus on generating `requirements' for supporting the production of that structure. Due to time and space constraints, however, only a relatively cursory examination of these features was possible. Secondly the paper presents some thoughts on the difficulties associated with the analytic---in particular ethnographic---study of code, drawing on general problems as well as issues arising from the difficulties and failings encountered as part of the analysis presented in the first section.
Resumo:
Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles and feathers; physiologically, it can organise ciliary beating. Here we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.
Resumo:
In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier--Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality argument (weighted) Type I a posteriori bounds are derived for the estimation of the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain dual problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed approach will be presented.
Resumo:
When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
Resumo:
This lecture course covers the theory of so-called duality-based a posteriori error estimation of DG finite element methods. In particular, we formulate consistent and adjoint consistent DG methods for the numerical approximation of both the compressible Euler and Navier-Stokes equations; in the latter case, the viscous terms are discretized based on employing an interior penalty method. By exploiting a duality argument, adjoint-based a posteriori error indicators will be established. Moreover, application of these computable bounds within automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic and anisotropic adaptive strategies, as well as $hp$-mesh refinement will be investigated.
Resumo:
We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.
Resumo:
Background: Statistical analysis of DNA microarray data provides a valuable diagnostic tool for the investigation of genetic components of diseases. To take advantage of the multitude of available data sets and analysis methods, it is desirable to combine both different algorithms and data from different studies. Applying ensemble learning, consensus clustering and cross-study normalization methods for this purpose in an almost fully automated process and linking different analysis modules together under a single interface would simplify many microarray analysis tasks. Results: We present ArrayMining.net, a web-application for microarray analysis that provides easy access to a wide choice of feature selection, clustering, prediction, gene set analysis and cross-study normalization methods. In contrast to other microarray-related web-tools, multiple algorithms and data sets for an analysis task can be combined using ensemble feature selection, ensemble prediction, consensus clustering and cross-platform data integration. By interlinking different analysis tools in a modular fashion, new exploratory routes become available, e.g. ensemble sample classification using features obtained from a gene set analysis and data from multiple studies. The analysis is further simplified by automatic parameter selection mechanisms and linkage to web tools and databases for functional annotation and literature mining. Conclusion: ArrayMining.net is a free web-application for microarray analysis combining a broad choice of algorithms based on ensemble and consensus methods, using automatic parameter selection and integration with annotation databases.