4 resultados para Numerical analysis.

em Nottingham eTheses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is concerned with the design and analysis of hp-version discontinuous Galerkin (DG) finite element methods for boundary-value problems involving the biharmonic operator. The first part extends the unified approach of Arnold, Brezzi, Cockburn & Marini (SIAM J. Numer. Anal. 39, 5 (2001/02), 1749-1779) developed for the Poisson problem, to the design of DG methods via an appropriate choice of numerical flux functions for fourth order problems; as an example we retrieve the interior penalty DG method developed by Suli & Mozolevski (Comput. Methods Appl. Mech. Engrg. 196, 13-16 (2007), 1851-1863). The second part of this work is concerned with a new a-priori error analysis of the hp-version interior penalty DG method, when the error is measured in terms of both the energy-norm and L2-norm, as well certain linear functionals of the solution, for elemental polynomial degrees $p\ge 2$. Also, provided that the solution is piecewise analytic in an open neighbourhood of each element, exponential convergence is also proven for the p-version of the DG method. The sharpness of the theoretical developments is illustrated by numerical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.