3 resultados para Nonlinear static analysis
em Nottingham eTheses
Resumo:
We find approximations to travelling breather solutions of the one-dimensional Fermi-Pasta-Ulam (FPU) lattice. Both bright breather and dark breather solutions are found. We find that the existence of localised (bright) solutions depends upon the coefficients of cubic and quartic terms of the potential energy, generalising an earlier inequality derived by James [CR Acad Sci Paris 332, 581, (2001)]. We use the method of multiple scales to reduce the equations of motion for the lattice to a nonlinear Schr{\"o}dinger equation at leading order and hence construct an asymptotic form for the breather. We show that in the absence of a cubic potential energy term, the lattice supports combined breathing-kink waveforms. The amplitude of breathing-kinks can be arbitrarily small, as opposed to traditional monotone kinks, which have a nonzero minimum amplitude in such systems. We also present numerical simulations of the lattice, verifying the shape and velocity of the travelling waveforms, and confirming the long-lived nature of all such modes.
Resumo:
We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.
Resumo:
Matrix converters convert a three-phase alternating-current power supply to a power supply of a different peak voltage and frequency, and are an emerging technology in a wide variety of applications. However, they are susceptible to an instability, whose behaviour is examined herein. The desired “steady-state” mode of operation of the matrix converter becomes unstable in a Hopf bifurcation as the output/input voltage transfer ratio, q, is increased through some threshold value, qc. Through weakly nonlinear analysis and direct numerical simulation of an averaged model, we show that this bifurcation is subcritical for typical parameter values, leading to hysteresis in the transition to the oscillatory state: there may thus be undesirable large-amplitude oscillations in the output voltages even when q is below the linear stability threshold value qc.