2 resultados para Non equilibrium

em Nottingham eTheses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with an analysis of the Becker-Döring equations which lie at the heart of a number of descriptions of non-equilibrium phase transitions and related complex dynamical processes. The Becker-Döring theory describes growth and fragmentation in terms of stepwise addition or removal of single particles to or from clusters of similar particles and has been applied to a wide range of problems of physicochemical and biological interest within recent years. Here we consider the case where the aggregation and fragmentation rates depend exponentially on cluster size. These choices of rate coefficients at least qualitatively correspond to physically realistic molecular clustering scenarios such as occur in, for example, simulations of simple fluids. New similarity solutions for the constant monomer Becker-Döring system are identified, and shown to be generic in the case of aggregation and fragmentation rates that depend exponentially on cluster size.