4 resultados para NITRIC-OXIDE SCAVENGERS
em Nottingham eTheses
Resumo:
High blood pressure (BP), pulse pressure (PP), and rate pressure product (RPP) areeach associated independently with a poor outcome in acute ischemic stroke. Whereas nitric oxide (NO) donors, such as glyceryl trinitrate (GTN), lower blood pressure in acute ischemic stroke, their effect on other hemodynamic measures is not known. We performed a systematic review of the effects of NO donors on systemic hemodynamic measures in patients with acute/subacute stroke. Randomized controlled trials were identified from searches of the Cochrane Library, Pubmed, and Embase. Information on hemodynamic measures, including systolic BP (SBP), diastolic BP (DBP), and heart rate, were assessed, and hemodynamic derivatives of these were calculated: PP (PP SBP DBP), mean arterial pressure (MAP DBP PP/3), mid blood pressure (MBP (SBP DBP)/2), pulse pressure index (PPI PP/MAP), and RPP (RPP SBP HR). The effect of treatment on hemodynamic measures was calculated as the weighted mean difference (WMD) between treated and control groups with adjustment for baseline. Results: Three trials involving 145 patients were identified; 93 patients received the NO donor, GTN, and 52 control. As compared with placebo, GTN significantly reduced SBP (WMD -9.80 mmHg, p< 0.001), DBP (WMD -4.43 mmHg, p<0.001), MAP (WMD -6.41 mmHg, p< 0.001), MBP (WMD -7.33 mmHg,p<0.001), PP (WMD -6.11 mmHg, p<0.001 ) and PPI (WMD -0.03, p=0.04 ). 3 GTN increased HR (WMD +3.87 bpm, p<0.001) and non-significantly lowered RPP (WMD -323 mmHg.bpm, p=0.14). Conclusion: The NO donor GTN reduces BP, PP and other derivatives in acute and subacute stroke whilst increasing heart rate.
Resumo:
Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.
Resumo:
Objective: Excess levels of free radicals such as nitric oxide (NO) and superoxide anion (O2-)are associated with the pathogenesis of endothelial cell dysfunction in diabetes mellitus. This study was designed to investigate the underlying causes of oxidative stress in coronary microvascular endothelial cells (CMEC) exposed to hyperglycaemia. Methods: CMEC were cultured under normal (5.5 mmol/L) or high glucose (22 mmol/L)concentrations for 7 days. The activity and expression (protein level) of eNOS, iNOS, NAD(P)H oxidase and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase and glutahione peroxidase (GPx) were investigated by specific activity assays and Western analyses,respectively while the effects of hyperglycaemia on nitrite and O2 - generation were investigated by Griess reaction and cytochrome C reduction assay, respectively. Results: Hyperglycaemia did not alter eNOS or iNOS protein expressions and overall nitrite generation, an index of NO production. However, it significantly reduced the levels of intracellular antioxidant glutathione by 50% (p<0.05) and increased the protein expressions and/or activities of p22-phox, a membrane-bound component of pro-oxidant NAD(P)H oxidase and antioxidant enzymes (p<0.05). Free radical-scavengers, namely, Tiron and MPG (0.1-1 mol/L) reduced hyperglycaemia-induced antioxidant enzyme activity and increased glutathione and nitrite generation to the levels observed in CMEC cultured in normoglycaemic medium (p<0.01). The differences in enzyme activity and expressions were independent of the increased osmolarity generated by high glucose levels as investigated by using equimolar concentrations of mannitol in parallel experiments. Conclusions: These results suggest that hyperglycaemia-induced oxidative stress may arise in CMEC as a result of enhanced prooxidant enzyme activity and diminished generation of 3 antioxidant glutathione. By increasing the antioxidant enzyme capacity CMEC may protect themselves against free radical-induced cell damage in diabetic conditions. The definitive version is available at http://www.blackwell-synergy.com