2 resultados para Metropolis-coupled Markov Chain Monte Carlo
em Nottingham eTheses
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.
Resumo:
The fundamental objective for health research is to determine whether changes should be made to clinical decisions. Decisions made by veterinary surgeons in the light of new research evidence are known to be influenced by their prior beliefs, especially their initial opinions about the plausibility of possible results. In this paper, clinical trial results for a bovine mastitis control plan were evaluated within a Bayesian context, to incorporate a community of prior distributions that represented a spectrum of clinical prior beliefs. The aim was to quantify the effect of veterinary surgeons’ initial viewpoints on the interpretation of the trial results. A Bayesian analysis was conducted using Markov chain Monte Carlo procedures. Stochastic models included a financial cost attributed to a change in clinical mastitis following implementation of the control plan. Prior distributions were incorporated that covered a realistic range of possible clinical viewpoints, including scepticism, enthusiasm and uncertainty. Posterior distributions revealed important differences in the financial gain that clinicians with different starting viewpoints would anticipate from the mastitis control plan, given the actual research results. For example, a severe sceptic would ascribe a probability of 0.50 for a return of <£5 per cow in an average herd that implemented the plan, whereas an enthusiast would ascribe this probability for a return of >£20 per cow. Simulations using increased trial sizes indicated that if the original study was four times as large, an initial sceptic would be more convinced about the efficacy of the control plan but would still anticipate less financial return than an initial enthusiast would anticipate after the original study. In conclusion, it is possible to estimate how clinicians’ prior beliefs influence their interpretation of research evidence. Further research on the extent to which different interpretations of evidence result in changes to clinical practice would be worthwhile.