3 resultados para Messengers

em Nottingham eTheses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gating of sensory (e.g. auditory) information has been demonstrated as a reduction in the auditory-evoked potential responses recorded in the brain of both normal animals and human subjects. Auditory gating is perturbed in schizophrenic patients and pharmacologically by drugs such as amphetamine, phencyclidine or ketamine, which precipitate schizophrenic-like symptoms in normal subjects. The neurobiological basis underlying this sensory gating can be investigated using local field potential recordings from single electrodes. In this paper we use such technology to investigate the role of cannabinoids in sensory gating. Cannabinoids represent a fundamentally new class of retrograde messengers which are released postsynaptically and bind to presynaptic receptors. In this way they allow fine-tuning of neuronal response, and in particular can lead to so-called depolarization-induced suppression of inhibition (DSI). Our experimental results show that application of the exogenous cannabinoid WIN55, 212-2 can abolish sensory gating as measured by the amplitude of local field responses in rat hippocampal region CA3. Importantly we develop a simple firing rate population model of CA3 and show that gating is heavily dependent upon the presence of a slow inhibitory (GABAB) pathway. Moreover, a simple phenomenological model of cannabinoid dynamics underlying DSI is shown to abolish gating in a manner consistent with our experimental findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.