7 resultados para Mergers and acquisitions, analysts, consensus forecast error
em Nottingham eTheses
Resumo:
We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
Perspective taking is a crucial ability that guides our social interactions. In this study, we show how the specific patterns of errors of brain-damaged patients in perspective taking tasks can help us further understand the factors contributing to perspective taking abilities. Previous work (e.g., Samson, Apperly, Chiavarino, & Humphreys, 2004; Samson, Apperly, Kathirgamanathan, & Humphreys, 2005) distinguished two components of perspective taking: the ability to inhibit our own perspective and the ability to infer someone else’s perspective. We assessed these components using a new nonverbal false belief task which provided different response options to detect three types of response strategies that participants might be using: a complete and spared belief reasoning strategy, a reality-based response selection strategy in which participants respond from their own perspective, and a simplified mentalising strategy in which participants avoid responding from their own perspective but rely on inaccurate cues to infer the other person’s belief. One patient, with a self-perspective inhibition deficit, almost always used the reality-based response strategy; in contrast, the other patient, with a deficit in taking other perspectives, tended to use the simplified mentalising strategy without necessarily transposing her own perspective. We discuss the extent to which the pattern of performance of both patients could relate to their executive function deficit and how it can inform us on the cognitive and neural components involved in belief reasoning.
Resumo:
We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.
Resumo:
In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.
Resumo:
Across the international educational landscape, numerous higher education institutions (HEIs) offer postgraduate programmes in occupational health psychology (OHP). These seek to empower the next generation of OHP practitioners with the knowledge and skills necessary to advance the understanding and prevention of workplace illness and injury, improve working life and promote healthy work through the application of psychological principles and practices. Among the OHP curricula operated within these programmes there exists considerable variability in the topics addressed. This is due, inter alia, to the youthfulness of the discipline and the fact that the development of educational provision has been managed at the level of the HEI where it has remained undirected by external forces such as the discipline’s representative bodies. Such variability makes it difficult to discern the key characteristics of a curriculum which is important for programme accreditation purposes, the professional development and regulation of practitioners and, ultimately, the long-term sustainability of the discipline. This chapter has as its focus the imperative for and development of consensus surrounding OHP curriculum areas. It begins by examining the factors that are currently driving curriculum developments and explores some of the barriers to such. It then reviews the limited body of previous research that has attempted to discern key OHP curriculum areas. This provides a foundation upon which to describe a study conducted by the current authors that involved the elicitation of subject matter expert opinion from an international sample of academics involved in OHP-related teaching and research on the question of which topic areas might be considered important for inclusion within an OHP curriculum. The chapter closes by drawing conclusions on steps that could be taken by the discipline’s representative bodies towards the consolidation and accreditation of a core curriculum.