2 resultados para Latinoamerican philosophi, cristianity, critic.

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coinduction is a method of growing importance in reasoning about functional languages, due to the increasing prominence of lazy data structures. Through the use of bisimulations and proofs that bisimilarity is a congruence in various domains it can be used to prove the congruence of two processes. A coinductive proof requires a relation to be chosen which can be proved to be a bisimulation. We use proof planning to develop a heuristic method which automatically constucts a candidate relation. If this relation doesn't allow the proof to go through a proof critic analyses the reasons why it failed and modifies the relation accordingly. Several proof tools have been developed to aid coinductive proofs but all require user interaction. Crucially they require the user to supply an appropriate relation which the system can then prove to be a bisimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.