2 resultados para LAMELLAR KERATOPLASTY
em Nottingham eTheses
Resumo:
We describe the evolution of a bistable chemical reaction in a closed two-dimensional chaotic laminar flow, from a localized initial disturbance. When the fluid mixing is sufficiently slow, the disturbance may spread and eventually occupy the entire fluid domain. By contrast, rapid mixing tends to dilute the initial state and so extinguish the disturbance. Such a dichotomy is well known. However, we report here a hitherto apparently unremarked intermediate case, a persistent highly localized disturbance. Such a localized state arises when the Damkoehler number is great enough to sustain a "hot spot," but not so great as to lead to global spread. We show that such a disturbance is located in the neighborhood of an unstable periodic orbit of the flow, and we describe some limited aspects of its behavior using a reduced, lamellar model. Copyright American Physical Society (APS) 2006.
Resumo:
The evolution of a competitive-consecutive chemical reaction is computed numerically in a two-dimensional chaotic fluid flow with initially segregated reactants. Results from numerical simulations are used to evaluate a variety of reduced models commonly adopted to model the full advection-reaction-diffusion problem. Particular emphasis is placed upon fast reactions, where the yield varies most significantly with Peclet number (the ratio of diffusive to advective time scales). When effects of the fluid mechanical mixing are strongest, we find that the yield of the reaction is underestimated by a one-dimensional lamellar model that ignores the effects of fluid mixing, but overestimated by two other lamellar models that include fluid mixing.