2 resultados para L33 - Comparison of Public and Private Enterprises

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Evidence suggests that both the migration and activation of neutrophils into the airway is of importance in pathological conditions such as pulmonary emphysema. In the present study, we describe in vivo models of lung neutrophil infiltration and activation in mice and hamsters. RESULTS: BALB/c and C57BL/6 mice were intranasally treated with lipopolysaccharide (0.3 mg/kg). Twenty-four hours after, animals were treated intranasally with N-Formyl-Met-Leu-Phe (0 to 5 mg/kg). Golden Syrian hamsters were treated intratracheally with 0.5 mg/kg of lipopolysaccharide. Twenty-four hours after, animals were treated intratracheally with 0.25 mg/kg of N-Formyl-Met-Leu-Phe. Both mice and hamster were sacrificed two hours after the N-Formyl-Met-Leu-Phe application. In both BALB/c and C57BL/6 mice, a neutrophil infiltration was observed after the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe. However, 5 times less neutrophil was found in C57BL/6 mice when compared to BALB/c mice. This was reflected in the neutrophil activation parameters measured (myeloperoxidase and elastase activities). Despite the presence of neutrophil and their activation status, no lung haemorrhage could be detected in both strains of mice. When compared with mice, the lung inflammation induced by the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe was much greater in the hamster. In parallel with this lung inflammation, a significant lung haemorrhage was also observed. CONCLUSIONS: Both mouse and hamster can be used for pharmacological studies of new drugs or other therapeutics agents that aimed to interfere with neutrophil activation. However, only the hamster model seems to be suitable for studying the haemorrhagic lung injury process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Many acute stroke trials have given neutral results. Sub-optimal statistical analyses may be failing to detect efficacy. Methods which take account of the ordinal nature of functional outcome data are more efficient. We compare sample size calculations for dichotomous and ordinal outcomes for use in stroke trials. Methods Data from stroke trials studying the effects of interventions known to positively or negatively alter functional outcome – Rankin Scale and Barthel Index – were assessed. Sample size was calculated using comparisons of proportions, means, medians (according to Payne), and ordinal data (according to Whitehead). The sample sizes gained from each method were compared using Friedman 2 way ANOVA. Results Fifty-five comparisons (54 173 patients) of active vs. control treatment were assessed. Estimated sample sizes differed significantly depending on the method of calculation (Po00001). The ordering of the methods showed that the ordinal method of Whitehead and comparison of means produced significantly lower sample sizes than the other methods. The ordinal data method on average reduced sample size by 28% (inter-quartile range 14–53%) compared with the comparison of proportions; however, a 22% increase in sample size was seen with the ordinal method for trials assessing thrombolysis. The comparison of medians method of Payne gave the largest sample sizes. Conclusions Choosing an ordinal rather than binary method of analysis allows most trials to be, on average, smaller by approximately 28% for a given statistical power. Smaller trial sample sizes may help by reducing time to completion, complexity, and financial expense. However, ordinal methods may not be optimal for interventions which both improve functional outcome