3 resultados para Human Endothelial-cells
em Nottingham eTheses
Resumo:
The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.
Resumo:
Objective: Excess levels of free radicals such as nitric oxide (NO) and superoxide anion (O2-)are associated with the pathogenesis of endothelial cell dysfunction in diabetes mellitus. This study was designed to investigate the underlying causes of oxidative stress in coronary microvascular endothelial cells (CMEC) exposed to hyperglycaemia. Methods: CMEC were cultured under normal (5.5 mmol/L) or high glucose (22 mmol/L)concentrations for 7 days. The activity and expression (protein level) of eNOS, iNOS, NAD(P)H oxidase and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase and glutahione peroxidase (GPx) were investigated by specific activity assays and Western analyses,respectively while the effects of hyperglycaemia on nitrite and O2 - generation were investigated by Griess reaction and cytochrome C reduction assay, respectively. Results: Hyperglycaemia did not alter eNOS or iNOS protein expressions and overall nitrite generation, an index of NO production. However, it significantly reduced the levels of intracellular antioxidant glutathione by 50% (p<0.05) and increased the protein expressions and/or activities of p22-phox, a membrane-bound component of pro-oxidant NAD(P)H oxidase and antioxidant enzymes (p<0.05). Free radical-scavengers, namely, Tiron and MPG (0.1-1 mol/L) reduced hyperglycaemia-induced antioxidant enzyme activity and increased glutathione and nitrite generation to the levels observed in CMEC cultured in normoglycaemic medium (p<0.01). The differences in enzyme activity and expressions were independent of the increased osmolarity generated by high glucose levels as investigated by using equimolar concentrations of mannitol in parallel experiments. Conclusions: These results suggest that hyperglycaemia-induced oxidative stress may arise in CMEC as a result of enhanced prooxidant enzyme activity and diminished generation of 3 antioxidant glutathione. By increasing the antioxidant enzyme capacity CMEC may protect themselves against free radical-induced cell damage in diabetic conditions. The definitive version is available at http://www.blackwell-synergy.com