5 resultados para Household employees
em Nottingham eTheses
Resumo:
Study objective: To examine the relationship between work stress, as indicated by the job strain model and the effort-reward imbalance model, and smoking. Setting: Ten municipalities and 21 hospitals in Finland. Design and Participants: Binary logistic regression models for the prevalence of smoking were related to survey responses of 37 309 female and 8881 male Finnish public sector employees aged 17-65. Separate multinomial logistic regression models were calculated for smoking intensity for 8130 smokers. In addition, binary logistic regression models for ex-smoking were fitted among 16 277 former and current smokers. In all analyses, adjustments were made for age, basic education, occupational status, type of employment and marital status. Main results: Respondents with high effort-reward imbalance or lower rewards were more likely to be smokers. Among smokers, an increased likelihood of higher intensity of smoking was associated with higher job strain and higher effort-reward imbalance and their components such as low job control and low rewards. Smoking intensity was also higher in active jobs in women, in passive jobs and among employees with low effort expenditure. Among former and current smokers, high job strain, high effort-reward imbalance and high job demands were associated with a higher likelihood of being a current smoker. Lower effort was associated with a higher likelihood of ex-smoking. Conclusions: This evidence suggests an association between work stress and smoking and implies that smoking cessation programs may benefit from the taking into account the modification of stressful features of work environment. Key words: effort-reward imbalance; job strain; smoking. Abbreviations: OR, odds ratio; CI, confidence interval; SES, socioeconomic status
Resumo:
Background In occupational life, a mismatch between high expenditure of effort and receiving few rewards may promote the co-occurrence of lifestyle risk factors, however, there is insufficient evidence to support or refute this hypothesis. The aim of this study is to examine the extent to which the dimensions of the Effort-Reward Imbalance (ERI) model – effort, rewards and ERI – are associated with the co-occurrence of lifestyle risk factors. Methods Based on data from the Finnish Public Sector Study, cross-sectional analyses were performed for 28,894 women and 7233 men. ERI was conceptualized as a ratio of effort and rewards. To control for individual differences in response styles, such as a personal disposition to answer negatively to questionnaires, occupational and organizational -level ecological ERI scores were constructed in addition to individual-level ERI scores. Risk factors included current smoking, heavy drinking, body mass index ≥25 kg/m2, and physical inactivity. Multinomial logistic regression models were used to estimate the likelihood of having one risk factor, two risk factors, and three or four risk factors. The associations between ERI and single risk factors were explored using binary logistic regression models. Results After adjustment for age, socioeconomic position, marital status, and type of job contract, women and men with high ecological ERI were 40% more likely to have simultaneously ≥3 lifestyle risk factors (vs. 0 risk factors) compared with their counterparts with low ERI. When examined separately, both low ecological effort and low ecological rewards were also associated with an elevated prevalence of risk factor co-occurrence. The results obtained with the individual-level scores were in the same direction. The associations of ecological ERI with single risk factors were generally less marked than the associations with the co-occurrence of risk factors. Conclusion This study suggests that a high ratio of occupational efforts relative to rewards may be associated with an elevated risk of having multiple lifestyle risk factors. However, an unexpected association between low effort and a higher likelihood of risk factor co-occurrence as well as the absence of data on overcommitment (and thereby a lack of full test of the ERI model) warrant caution in regard to the extent to which the entire ERI model is supported by our evidence.
Resumo:
This paper is concerned with SIR (susceptible--infected--removed) household epidemic models in which the infection response may be either mild or severe, with the type of response also affecting the infectiousness of an individual. Two different models are analysed. In the first model, the infection status of an individual is predetermined, perhaps due to partial immunity, and in the second, the infection status of an individual depends on the infection status of its infector and on whether the individual was infected by a within- or between-household contact. The first scenario may be modelled using a multitype household epidemic model, and the second scenario by a model we denote by the infector-dependent-severity household epidemic model. Large population results of the two models are derived, with the focus being on the distribution of the total numbers of mild and severe cases in a typical household, of any given size, in the event that the epidemic becomes established. The aim of the paper is to investigate whether it is possible to determine which of the two underlying explanations is causing the varying response when given final size household outbreak data containing mild and severe cases. We conduct numerical studies which show that, given data on sufficiently many households, it is generally possible to discriminate between the two models by comparing the Kullback-Leibler divergence for the two fitted models to these data.
Resumo:
This paper is concerned with a stochastic SIR (susceptible-infective-removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.
Resumo:
This paper considers a stochastic SIR (susceptible-infective-removed) epidemic model in which individuals may make infectious contacts in two ways, both within 'households' (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically-motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly-sized finite populations. The extension to unequal sized households is discussed briefly.