1 resultado para Hedge Funds, Data Biases, Attrition, Survivorship, Investment Style
em Nottingham eTheses
Filtro por publicador
- Aberdeen University (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (12)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- Aquatic Commons (10)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (46)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (79)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (55)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (4)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (18)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (228)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (65)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (4)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Metodista de São Paulo (5)
- Universidade Técnica de Lisboa (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (4)
- University of Michigan (13)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.