1 resultado para Grid-based clustering approach
em Nottingham eTheses
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Aston University Research Archive (36)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (32)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (69)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (10)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (38)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (21)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- DRUM (Digital Repository at the University of Maryland) (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (45)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (52)
- Repositorio Institucional UNISALLE - Colombia (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (18)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (15)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (19)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (16)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (55)
- Université de Montréal, Canada (13)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (36)
- University of Washington (6)
Resumo:
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.