2 resultados para Greedy randomized adaptive search procedure
em Nottingham eTheses
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.