4 resultados para Graph analytics

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.