8 resultados para General allocation problems

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.