3 resultados para Games of chance (Mathematics)

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix converters convert a three-phase alternating-current power supply to a power supply of a different peak voltage and frequency, and are an emerging technology in a wide variety of applications. However, they are susceptible to an instability, whose behaviour is examined herein. The desired “steady-state” mode of operation of the matrix converter becomes unstable in a Hopf bifurcation as the output/input voltage transfer ratio, q, is increased through some threshold value, qc. Through weakly nonlinear analysis and direct numerical simulation of an averaged model, we show that this bifurcation is subcritical for typical parameter values, leading to hysteresis in the transition to the oscillatory state: there may thus be undesirable large-amplitude oscillations in the output voltages even when q is below the linear stability threshold value qc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive and solve models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel. We consider a variety of loss laws and a variety of coagulation kernels, deriving exact results where possible, and more generally reducing the equations to similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial cluster size distribution function, we illustrate how numerical results from earlier work can be interpreted in the light of the theory presented herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89). The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.