3 resultados para Game-based learning model
em Nottingham eTheses
Resumo:
The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.
Resumo:
In this paper, we investigate output accuracy for a Discrete Event Simulation (DES) model and Agent Based Simulation (ABS) model. The purpose of this investigation is to find out which of these simulation techniques is the best one for modelling human reactive behaviour in the retail sector. In order to study the output accuracy in both models, we have carried out a validation experiment in which we compared the results from our simulation models to the performance of a real system. Our experiment was carried out using a large UK department store as a case study. We had to determine an efficient implementation of management policy in the store’s fitting room using DES and ABS. Overall, we have found that both simulation models were a good representation of the real system when modelling human reactive behaviour.
Resumo:
Agent-based modelling and simulation offers a new and exciting way of understanding the world of work. In this paper we describe the development of an agent-based simulation model, designed to help to understand the relationship between human resource management practices and retail productivity. We report on the current development of our simulation model which includes new features concerning the evolution of customers over time. To test some of these features we have conducted a series of experiments dealing with customer pool sizes, standard and noise reduction modes, and the spread of the word of mouth. Our multidisciplinary research team draws upon expertise from work psychologists and computer scientists. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents offer potential for fostering sustainable organisational capabilities in the future.