1 resultado para Four-color problem
em Nottingham eTheses
Filtro por publicador
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (114)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (7)
- Biodiversity Heritage Library, United States (23)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (3)
- CentAUR: Central Archive University of Reading - UK (9)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (83)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Harvard University (1)
- Institute of Public Health in Ireland, Ireland (17)
- Instituto Politécnico do Porto, Portugal (49)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (23)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (40)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (57)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (24)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (123)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade do Minho (38)
- Universidade dos Açores - Portugal (4)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (101)
- Université de Montréal, Canada (1)
- University of Michigan (10)
- University of Queensland eSpace - Australia (135)
Resumo:
This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.