2 resultados para Explosion.
em Nottingham eTheses
Resumo:
We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.
Resumo:
This article deals with climate change from a linguistic perspective. Climate change is an extremely complex issue that has exercised the minds of experts and policy makers with renewed urgency in recent years. It has prompted an explosion of writing in the media, on the internet and in the domain of popular science and literature, as well as a proliferation of new compounds around the word ‘carbon’ as a hub, such as ‘carbon indulgence’, a new compound that will be studied in this article. Through a linguistic analysis of lexical and discourse formations around such ‘carbon compounds’ we aim to contribute to a broader understanding of the meaning of climate change. Lexical carbon compounds are used here as indicators for observing how human symbolic cultures change and adapt in response to environmental threats and how symbolic innovation and transmission occurs.