7 resultados para Experimental Problems

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation and the case base. Experimental results are analysed and related research issues for future work are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose: At least part of the failure in the transition from experimental to clinical studies in stroke has been attributed to the imprecision introduced by problems in the design of experimental stroke studies. Using a metaepidemiologic approach, we addressed the effect of randomization, blinding, and use of comorbid animals on the estimate of how effectively therapeutic interventions reduce infarct size. Methods: Electronic and manual searches were performed to identify meta-analyses that described interventions in experimental stroke. For each meta-analysis thus identified, a reanalysis was conducted to estimate the impact of various quality items on the estimate of efficacy, and these estimates were combined in a meta meta-analysis to obtain a summary measure of the impact of the various design characteristics. Results: Thirteen meta-analyses that described outcomes in 15 635 animals were included. Studies that included unblinded induction of ischemia reported effect sizes 13.1% (95% CI, 26.4% to 0.2%) greater than studies that included blinding, and studies that included healthy animals instead of animals with comorbidities overstated the effect size by 11.5% (95% CI, 21.2% to 1.8%). No significant effect was found for randomization, blinded outcome assessment, or high aggregate CAMARADES quality score. Conclusions: We provide empirical evidence of bias in the design of studies, with studies that included unblinded induction of ischemia or healthy animals overestimating the effectiveness of the intervention. This bias could account for the failure in the transition from bench to bedside of stroke therapies.