5 resultados para Evolving cities: geocomputation in territorial planning
em Nottingham eTheses
Resumo:
With global markets and global competition, pressures are placed on manufacturing organizations to compress order fulfillment times, meet delivery commitments consistently and also maintain efficiency in operations to address cost issues. This chapter argues for a process perspective on planning, scheduling and control that integrates organizational planning structures, information systems as well as human decision makers. The chapter begins with a reconsideration of the gap between theory and practice, in particular for classical scheduling theory and hierarchical production planning and control. A number of the key studies of industrial practice are then described and their implications noted. A recent model of scheduling practice derived from a detailed study of real businesses is described. Socio-technical concepts are then introduced and their implications for the design and management of planning, scheduling and control systems are discussed. The implications of adopting a process perspective are noted along with insights from knowledge management. An overview is presented of a methodology for the (re-)design of planning, scheduling and control systems that integrates organizational, system and human perspectives. The most important messages from the chapter are then summarized.
Resumo:
As part of a long-term project aimed at designing classroom interventions to motivate language learners, we have searched for a motivation model that could serve as a theoretical basis for the methodological applications. We have found that none of the existing models we considered were entirely adequate for our purpose for three reasons: (1) they did not provide a sufficiently comprehensive and detailed summary of all the relevant motivational influences on classroom behaviour; (2) they tended to focus on how and why people choose certain courses of action, while ignoring or playing down the importance of motivational sources of executing goal-directed behaviour; and (3) they did not do justice to the fact that motivation is not static but dynamically evolving and changing in time, making it necessary for motivation constructs to contain a featured temporal axis. Consequently, partly inspired by Heckhausen and Kuhl's 'Action Control Theory', we have developed a new 'Process Model of L2 Motivation', which is intended both to account for the dynamics of motivational change in time and to synthesise many of the most important motivational conceptualisations to date. In this paper we describe the main components of this model, also listing a number of its limitations which need to be resolved in future research.
Resumo:
This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a heuristic for guiding rewriting steps in induction that has been used successfully in proof planning inductive proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs automatically. Accordingly, ordinal arithmetic has been implemented in lambda-clam, a higher order proof planning system for induction, and standard undergraduate text book problems have been successfully planned. We show the synthesis of a fixpoint for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting results than the textbook examples tried so far.
Resumo:
Automotive producers are aiming to make their order fulfilment processes more flexible. Opening the pipeline of planned products for dynamic allocation to dealers/ customers is a significant step to be more flexible but the behaviour of such Virtual-Build-To-Order systems are complex to predict and their performance varies significantly as product variety levels change. This study investigates the potential for intelligent control of the pipeline feed, taking into account the current status of inventory (level and mix) and of the volume and mix of unsold products in the planning pipeline, as well as the demand profile. Five ‘intelligent’ methods for selecting the next product to be planned into the production pipeline are analysed using a discrete event simulation model and compared to the unintelligent random feed. The methods are tested under two conditions, firstly when customers must be fulfilled with the exact product they request, and secondly when customers trade-off a shorter waiting time for compromise in specification. The two forms of customer behaviour have a substantial impact on the performance of the methods and there are also significant differences between the methods themselves. When the producer has an accurate model of customer demand, methods that attempt to harmonise the mix in the system to the demand distribution are superior.
Resumo:
Automotive producers are adopting multi-modal fulfillment models in which customers can be fulfilled by products from stock, by allocating as yet unmade products that are in the planning pipeline, or by building a product to order. This study explores how fulfillment is sensitive to several parameters of the system and how they interact with different methods for sequencing products into the production plan.