1 resultado para Dust Storm
em Nottingham eTheses
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (14)
- Aston University Research Archive (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (52)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (119)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (3)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (6)
- DigitalCommons - The University of Maine Research (7)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (52)
- Institute of Public Health in Ireland, Ireland (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (88)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (94)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (29)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (7)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- Scielo Saúde Pública - SP (33)
- Scientific Open-access Literature Archive and Repository (2)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (69)
- University of Michigan (88)
- University of Queensland eSpace - Australia (46)
- University of Washington (2)
Resumo:
Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.