2 resultados para Drag

em Nottingham eTheses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior-penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L_2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi & Rebay, cf. [11], the standard SIPG method outlined in [25], and an NIPG variant of the new scheme will be undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89). The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.