12 resultados para Discrete Two-point Boundary Value Problems
em Nottingham eTheses
Resumo:
We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.
Resumo:
This work is concerned with the design and analysis of hp-version discontinuous Galerkin (DG) finite element methods for boundary-value problems involving the biharmonic operator. The first part extends the unified approach of Arnold, Brezzi, Cockburn & Marini (SIAM J. Numer. Anal. 39, 5 (2001/02), 1749-1779) developed for the Poisson problem, to the design of DG methods via an appropriate choice of numerical flux functions for fourth order problems; as an example we retrieve the interior penalty DG method developed by Suli & Mozolevski (Comput. Methods Appl. Mech. Engrg. 196, 13-16 (2007), 1851-1863). The second part of this work is concerned with a new a-priori error analysis of the hp-version interior penalty DG method, when the error is measured in terms of both the energy-norm and L2-norm, as well certain linear functionals of the solution, for elemental polynomial degrees $p\ge 2$. Also, provided that the solution is piecewise analytic in an open neighbourhood of each element, exponential convergence is also proven for the p-version of the DG method. The sharpness of the theoretical developments is illustrated by numerical experiments.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling problems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisation’s effectiveness and execution speed by incorporating two additional steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repair is carried out by using the Prioritization step to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvements in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with iterative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods
Resumo:
In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.
Resumo:
We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.
Resumo:
Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2+1)-dimensional cubic nonlinear Schrödinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalised $(2+1)$-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does {\em not} go to zero with the amplitude; we find that the energy threshold is maximised by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached.