3 resultados para Different Beverage Types

em Nottingham eTheses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many mathematical models for pattern formation, a regular hexagonal pattern is stable in an infinite region. However, laboratory and numerical experiments are carried out in finite domains, and this imposes certain constraints on the possible patterns. In finite rectangular domains, it is shown that a regular hexagonal pattern cannot occur if the aspect ratio is rational. In practice, it is found experimentally that in a rectangular region, patterns of irregular hexagons are often observed. This work analyses the geometry and dynamics of irregular hexagonal patterns. These patterns occur in two different symmetry types, either with a reflection symmetry, involving two wavenumbers, or without symmetry, involving three different wavenumbers. The relevant amplitude equations are studied to investigate the detailed bifurcation structure in each case. It is shown that hexagonal patterns can bifurcate subcritically either from the trivial solution or from a pattern of rolls. Numerical simulations of a model partial differential equation are also presented to illustrate the behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.