4 resultados para Detection process
em Nottingham eTheses
Resumo:
The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.
Resumo:
The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.
Resumo:
The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.
Resumo:
The efficiency of current cargo screening processes at sea and air ports is largely unknown as few benchmarks exists against which they could be measured. Some manufacturers provide benchmarks for individual sensors but we found no benchmarks that take a holistic view of the overall screening procedures and no benchmarks that take operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. Our aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximise detection rates. In this paper we present our ideas for developing such a system and highlight the research challenges we have identified. Then we introduce our first case study and report on the progress we have made so far.