4 resultados para Dendrites

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the "sum-over-trips" approach [Abbott, L.F., Fahri, E., Gutmann, S.: The path integral for dendritic trees. Biological Cybernetics 66, 49--60 (1991)]. To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an $I_{h}$ current contributes to a voltage overshoot at the soma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations, as well as coincidence detection in pairs of dendrites and the dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools that will ultimately underpin systems neuroscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mode-locked response of excitable systems to periodic forcing has important applications in neuroscience. For example it is known that spatially extended place cells in the hippocampus are driven by the theta rhythm to generate a code conveying information about spatial location. Thus it is important to explore the role of neuronal dendrites in generating the response to periodic current injection. In this paper we pursue this using a compartmental model, with linear dynamics for each compartment, coupled to an active soma model that generates action potentials. By working with the piece-wise linear McKean model for the soma we show how the response of the whole neuron model (soma and dendrites) can be written in closed form. We exploit this to construct a stroboscopic map describing the response of the spatially extended model to periodic forcing. A linear stability analysis of this map, together with a careful treatment of the non-differentiability of the soma model, allows us to construct the Arnol'd tongue structure for 1:q states (one action potential for q cycles of forcing). Importantly we show how the presence of quasi-active membrane in the dendrites can influence the shape of tongues. Direct numerical simulations confirm our theory and further indicate that resonant dendritic membrane can enlarge the windows in parameter space for chaotic behavior. These simulations also show that the spatially extended neuron model responds differently to global as opposed to point forcing. In the former case spatio-temporal patterns of activity within an Arnol'd tongue are standing waves, whilst in the latter they are traveling waves.