3 resultados para Deluge
em Nottingham eTheses
Resumo:
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.
Resumo:
Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.
Resumo:
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.