3 resultados para Data classification

em Nottingham eTheses


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Baseline severity and clinical stroke syndrome (Oxford Community Stroke Project, OCSP) classification are predictors of outcome in stroke. We used data from the ‘Tinzaparin in Acute Ischaemic Stroke Trial’ (TAIST) to assess the relationship between stroke severity, early recovery, outcome and OCSP syndrome. Methods: TAIST was a randomised controlled trial assessing the safety and efficacy of tinzaparin versus aspirin in 1,484 patients with acute ischaemic stroke. Severity was measured as the Scandinavian Neurological Stroke Scale (SNSS) at baseline and days 4, 7 and 10, and baseline OCSP clinical classification recorded: total anterior circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar infarct (LACI) and posterior circulation infarction (POCI). Recovery was calculated as change in SNSS from baseline at day 4 and 10. The relationship between stroke syndrome and SNSS at days 4 and 10, and outcome (modified Rankin scale at 90 days) were assessed. Results: Stroke severity was significantly different between TACI (most severe) and LACI (mildest) at all four time points (p<0.001), with no difference between PACI and POCI. The largest change in SNSS score occurred between baseline and day 4; improvement was least in TACI (median 2 units), compared to other groups (median 3 units) (p<0.001). If SNSS did not improve by day 4, then early recovery and late functional outcome tended to be limited irrespective of clinical syndrome (SNSS, baseline: 31, day 10: 32; mRS, day 90: 4); patients who recovered early tended to continue to improve and had better functional outcome irrespective of syndrome (SNSS, baseline: 35, day 10: 50; mRS, day 90: 2). Conclusions: Although functional outcome is related to baseline clinical syndrome (best with LACI, worst with TACI), patients who improve early have a more favourable functional outcome, irrespective of their OCSP syndrome. Hence, patients with a TACI syndrome may still achieve a reasonable outcome if early recovery occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.