3 resultados para Cytosolic sulfotransferases
em Nottingham eTheses
Resumo:
We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca) in living cells. Modelling Ca release as a threshold process allows the explicit construction of travelling wave solutions to probe the dependence of Ca wave speed on physiologically important parameters such as the threshold for Ca release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca resequestration from the cytosol to the ER, and the total [Ca] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called "tango waves" and the dependence of Ca wave speed on the total [Ca]. The original publication is available at www.springerlink.com (Journal of Mathematical Biology)
Resumo:
We simulate currents and concentration profiles generated by Ca2+ release from the endoplasmic reticulum (ER) to the cytosol through IP3 receptor channel clusters. Clusters are described as conducting pores in the lumenal membrane with a diameter from 6 nm to 36 nm. The endoplasmic reticulum is modeled as a disc with a radius of 1–12 mm and an inner height of 28 nm. We adapt the dependence of the currents on the trans Ca2+ concentration (intralumenal) measured in lipid bilayer experiments to the cellular geometry. Simulated currents are compared with signal mass measurements in Xenopus oocytes. We find that release currents depend linearly on the concentration of free Ca2+ in the lumen. The release current is approximately proportional to the square root of the number of open channels in a cluster. Cytosolic concentrations at the location of the cluster range from 25 μM to 170 μM. Concentration increase due to puffs in a distance of a few micrometers from the puff site is found to be in the nanomolar range. Release currents decay biexponentially with timescales of < 1 s and a few seconds. Concentration profiles decay with timescales of 0.125–0.250 s upon termination of release.
Resumo:
We present a bidomain threshold model of intracellular calcium (Ca²⁺) dynamics in which, as suggested by recent experiments, the cytosolic threshold for Ca²⁺ liberation is modulated by the Ca²⁺ concentration in the releasing compartment. We explicitly construct stationary fronts and determine their stability using an Evans function approach. Our results show that a biologically motivated choice of a dynamic threshold, as opposed to a constant threshold, can pin stationary fronts that would otherwise be unstable. This illustrates a novel mechanism to stabilise pinned interfaces in continuous excitable systems. Our framework also allows us to compute travelling pulse solutions in closed form and systematically probe the wave speed as a function of physiologically important parameters. We find that the existence of travelling wave solutions depends on the time scale of the threshold dynamics, and that facilitating release by lowering the cytosolic threshold increases the wave speed. The construction of the Evans function for a travelling pulse shows that of the co-existing fast and slow solutions the slow one is always unstable.